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1. INTRODUCTION

The important parameters which
influence the rain erosion behavior of a
material can be classified as:

e Those which relate to the
environment such as drop size, drop size
distribution, and liquid water content of the

air.

e Those which relate to the geometry of
the material exposed to rain such as angle of
impingement and surface roughness.

e Those whichrelate to the properties of
the material such as microstructure, density,
porosity, acoustic velocity, modulus of
elasticity, strength, and hardness.

The temperature distribution through the
radome material at entrance to the rainfield
is an additional factor which is important
for some flight regimes. Therefore, it is
important that a material be properly
characterized because of the wide possible
variability of properties.

For a particular material, the more
important parameters involved in rain
erosion are drop size, number of encounters,
velocity of impact, and angle of impact, The
temperature of the material becomes more
important in direct relation to its effect on
mechanical properties.

The most widely used test facility capable
of testing radome materials in multiple
impact simulated rain at Mach 5 is the
monorail sled facility at the Holloman Air
Force Base, New Mexico. In the current
Holloman rainfield, the median volume
diameter drop size is approximately 1.4 mm.
Surveys of natural rain indicate that median
volume diameters range from
approximately 1.0 to 2.0 mm in the
temperate climatic regions.' By this measure
the Holloman rainfield provides a

reasonable simulation of natural rain.

The number of raindrops that encounter
the test item depends on the density and
length of the rainfield. The rain density is
referred to as the liquid water content and is
usually expressed in grams of water per
cubic meter of air. To a first approximation
the number of raindrops that encounter a
surface in flight can be simulated in an
artificial rainfield by shortening the length
of the field and increasing the rain density
proportionately.” The mean density of the
current Holloman rainfield is 3.1 g/m’. The
resulting mean rain rate is 67 mm/ hr, which
is 21.5 mm/hr for each g/m® of rainfield
density. The corresponding ratio for natural
rain is 23.2 mm/hr per g/m’ of rainfield
density.? ‘

Previous efforts to evaluate the rain
erosion behavior of slip-cast fused silica
(SCFS) at supersonic velocities are well
documented.”® However, prior to the tests



discussed herein, rain erosion data for
natural high-purity SCFS had not been
generated. The high-purity silica is usually
sintered to a higher density (lower poroSity)
to achieve higher strength. The increased
strength does not necessarily improve its
resistance to damage by rain. In fact,
Walton, et al.® found that in the fully dense
condition, SCFS is more susceptible to
catastrophic fracture at velocities near
Mach 5 than is the lower-density material,
which erodes in layers. However, at
velocities below Mach 3 the higher-density
material experiences less erosion. It is
generally assumed that the SCFS of higher
porosity more successfully prevents the
propagation of cracks because the pores
tend to stop crack propagation.

SCFS is
hygroscopic, sealing against moisture

Because porous and
absorption is necessary to prevent electrical
and structural degradation: electrical
through change in dielectric constant and
structural through possible surface

spallation in flight at elevated temperature.

2. TEST PROGRAM

The primary purpose of this effort was to
determine the rain erosion behavior of high-
purity SCFS as a function of velocity and
angle of incidence. A second objective was
to determine if the coating/impregnant
utilized to minimize moisture absorption
had any effect on the erosion behavior of the
SCFS. A third objective was to screen
radome materials for use in flight regimes of
Mach 4 to 6.

The program involved testing cone frusta
samples of SCFS in the artificial rainfield on
supersonic sleds at Holloman Air Force Base.
One to seven SCFS samples were tested on
each of nine sled runs. Models having
semivertex angles of 15, 19,22.5, 25,27.5and
30 deg were tested. Average velocities in the
rainfield were 1272, 1433, 1524, and 1710
m/sec (Mach 3.7, 4.2, 4.5, 5.0).

Figure 1 shows the test vehicle with
sample subassemblies that were developed
for this effort. The test vehicle designs’ and
fabrication are discussed in Appendix A. A
sketch of the initial subassembly design is
presented in Figure 2. Appendices B, C, and
D show the design and modification, the
Holloman sled test facility, and test
environment, respectively.

3. RAIN EROSION SLED
TEST RESULTS

A summary of sample performance in all
tests is presented in Table 1. Samples are
identified by test number-position number.
Position number refers to position on the
test vehicle numbered clockwise facing the
vehicle and beginning at the 1 o’clock
position as indicated in Figure 1. Position 7
is in the center as shown. To evaluate the
behavior of the materials, surface profile
measurements, before and after each test,
were made at several positions on each
sample with a precision profilometer. Also,
the samples were weighed before and after
the tests. The
penetration, maximum depth of penetration

maximum depth of
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rate, and average depth of penetration rate
are reported in Table I. The average depth
of penetration rate is defined by the
expression:

Weight Loss
Material _ Effective | Time
Density * Surface *in Rain

Arca

Average Depih of Penctration Rate =

The maximum depth of penetration rate
is found by dividing the maximum depth of
penetration (measured by the 'proﬁlometer)
by the time in rain (Table 2). Maximum
erosion depths and rates are considered to
be of most interest and value, because
erosion was not uniform over the surface of
any sample, and radome structural failure
or radar attenuation can be expected to
occur or be worst where erosion is worst.
Because initiation of erosion depends on
raindrop size, and erosion rate depends on
surface roughness, it follows that areas
which experience early impact by large
drops would sustain the greater erosion.

The center models (samples) on tests 8,
10, and 11 were equipped with a steel raincap
having a tip diameter of 19.05 mm. All other
samples had a raincap tip diameter of 3.175
mm. The raincap of the center sample was
blunted to cause the shock waves to intersect
farther from the conical test vehicle and the
model-holdiﬁg struts, thereby reducing
shock-impingement heating to the test
vehicle structure. While traversing the
rainfield, shock waves from the models

intersect well aft of the models, thus

_eliminating shock interaction on adjacent

samples. Rain damage to SCFS appears to
have been insensitive to differences in the
two raincap nose radii used.

A. SUMMARY OF TESTS 1
THROUGH 5

Complete results for the first five sled tests
are covered in reference 7 and are
summarized here. Test conditions and
results for the first five sled tests are listed in
Tables 1 and 2. During this initial phase of
the test program, a model design and
mounting technique were developed that
prevented or minimized ceramic sample
damage and loss due to spurious causes (sled
vibration and stress risers caused by sample
size, shape, and edges). In spite of these
problems, more than two-thirds of the
SCFS
correlatable erosion data. In addition to
bare SCFS, SCFS with moisture sealants

and a few other candidate radome materials .

samples tested provided good

were tested.

Figure 3 through 13 are pre- and post-
test photographs of the test specimen and
hardware for the first five tests. The SCFS
samples in Figure 4 show the detrimental
effects of sharp edges at the base for the
sample design of Figure 2. Allsamples with
a semivertex angle of 15 degsurvived the 610
m rainfield at Mach 5 with negligible
erosion because the normal component of
velocity (V sin 6) was less than that at which
significant erosion begins on SCFS.

Edge effects in the form of chipping at the
base in test 1 were eliminated in test 2 and
subsequent tests by redesigning the external
configuration of the ceramic sample as
shown in Figure 14. All samples were SCFS
in test 2 except sample 5, which was Avcoat



8027, an epoxy. Only the 22.5 deg center
sample and the 15 deg sample coated with
chromium oxide (sample 1) were lost in the
1100 m rainfield. Erosion of high-purity
SCFC (samples 2, 3, and 4) was very minor,
whereas the erosion of low-density SCFS
(sample 6) was great. '

In test 3 only one SCFS model (15 deg in
Figure 9) survived at Mach 5 through 853 m
of artificial rain. The other 15 deg sample
was lost after exit from the rainfield. Al122.5
deg models were lost. A ruptured water line,
which possibly sprayed water across the
track, rriay have contributed to sample
failures in this test. The center sample was
Avcoat 8027.

Teflon, Avcoat 8027, and hot-pressed
silicon nitride survived in test 4. One SCFS
sample was lost early in the rainfield
(evidenced by the severity of rain damage on
sample mounting hardware), two samples
were damaged in rain, and the remaining
material was lost after leaving the rainfield.
One SCFS sample (4-1, Figure 11) survived
in a severely damaged condition. Additional
shock mounting procedures (Appendix B)
were implemented for SCFS samples with
semivertex angles of 22.5 deg and greater to
prevent sample loss after severe erosion.

Beginning with test 5, the techniques used
to eliminate damage by track vibrations and
stress risers were successful so that all
subsequent of SCFS were
recovered in a condition which allowed

samples

correlations to be made between erosion,
velocity, and angle of impingement. Six

10

SCFS specimens were successfully tested on
test 5 (Figure 13). The center sample was
made of quartz-polyimide.

B. TEST 7 (52R-A2)

Sample 2 was the only SCFS modelin test
7. This 22.5 deg specimen was tested at an
average velocity of 1727 m/sec (5666 ft/sec)
in rain. Its performance (7able I) was very
similar to that of SCFS samples with the
same semivertex angle and density tested
previously.’

C. TEST 8 (52R-B2)

Table | gives characterization and
performance data for each sample in test 8.
The cone semivertex angles were 19, 22.5
and 25 deg and the average velocity in the
rainfield (Table 2) was 1524 m/sec (5000
ft/sec). A pretest view of the test vehicle and
samples is shown in Figure 15 and the post-
test view is found in Figure 16. The surface
condition and weight loss of sample 8-4
indicate that a rain damage/erosion
threshold occurs at a normal component of
velocity near 500 m/sec; i.e., while most of
the surface was covered with very small pits,
a few large craters were found.

D. TEST 10 (52R-C1)

The excellent results from test 8
completed the data requirements at a
velocity near Mach 5. Data at lower
velocities and greater impingement angles
were needed to determine if the dependence

of erosion on the normal component of



velocity holds at other conditions. An
average velocity in rain of 1272 m/sec (4175
ft/sec) was achieved in test 10, which
included seven SCFS samples with
semivertex angles of 25, 27.5, and 30 deg.
Erosion data (mass loss, profilometer
measurements, and visual inspections) from
this test correlate well with previous results
and further substantiate the conclusion that
the erosion threshold velocity occurs near

500 m/sec.

Pre- and post-test views of the test vehicle
and samples are shown in Figures 17 and 18.
The center sample (10-7) had a 25 deg
semivertex angle which caused its normal
component of velocity to be slightly above
the damage threshold region as indicated by
visual inspection and the measured mass
loss of 1.175 g (Table I). Erosion data from
all seven samples correlated well with
previous results.

E. TEST 11 (52R-D1)

The sled velocity for test 11 was selected
to provide additional data at a velocity
between those of tests 8 and 10. Results from
these two previous tests indicated that
samples with semivertex angles of 22.5, 25,
and 27.5 deg should be tested. Six SCFS
samples (Figure 19) were tested in test 11:
one of 22.5 deg, three of 25 deg, and two of
27.5 deg. The seventh sample on this test
(11-1) was a silica-filled, filament-wound
silica furnished by the Lockheed Missiles
and Space Company, Inc.

11

The normal component of velocity (548
m/se¢) of the 22.5 deg SCFS sample was
near the damage threshold value (500
m/sec) as indicated by earlier results in this
test series, and the performance of this
sample was consistent with the previous
results. The rain erosion data from all SCFS
samples in this test correlate well with data
from the previous tests. Post-test views of
the samples are found in Figure 20.

4. DISCUSSION OF SLED
TEST RESULTS

Thirty-one “bare” SCFS samples with a
1.95 =*
successfully tested in rain, as listed in Table

density of 0.03 g/cm’ were
3. Pre- and post-test profilometer and
weight measurements, as well as post-test
structural appearance, indicate that the rain
erosion effects on these samples vary with
velocity and impingement angle.

Rain erosion data from the sled tests have
been assessed from several viewpoints. Mass
loss ratio, the ratio of material eroded to
water encountered, is presented in Figure
21. Within the velocity range of the tests, a
modified hyperbolic equation fits the data
well. These data indicate that catastrophic
damage may begin at a normal component
slightly above 620 m/sec.
Examination of samples, however, indicates

of velocity

unacceptable damage at lower velocities.
When the experimental data are plotted on
(Figure 22), a
discontinuity in the mass loss ratio is

semilogarithmic paper

indicated at a normal component of velocity
near 500 m/sec.




In addition, because maximum erosion
depth is believed to be of much greater
importance than mass loss or average
erosion, the maximum erosion rate is also
presented in Figure 23. This figure shows
that, for a given normal component of
velocity, the variation in the maximum
erosion rate (MER) is no greater than a
factor of three, a low value when the fragility
of SCFS and the variability of the rainfield
are considered.

The six data points shown for a normal
component of velocity (V sin 8) near 440
m/sec were obtained from models with a
semivertex angle of 15 deg. In addition,
other samples with § = 15 deg were run with
SR-80 impregnant, DC-808 coating, and
Cr; 0; surface impregnant.” The effects of
these coatings/impregnants on rain erosion
resistance appear to be negligible. The
MER’s the
impregnated with SR-80 are slightly higher
than the data for “bare” SCFS samples.
However, the difference is not significant.

for remaining samples

The data in Figures 21, 22, and 23 alone
do not fully indicate the significance of the
discontinuity in the rain erosion rate profile
of SCFS. These data, when taken in
conjunction with visual inspections, reveal
that the rain damage mechanism changes
from one of erosion to one of cratering at the
discontinuity, i.e., at the “rain damage
threshold” near V sin 6 = 500 m/sec. At
normal velocities below this threshold,
erosion was measurable but minimal,
consisting of very minor pits which covered

12

almost the complete surface of the sample.
At normal components of velocity near the
threshold, there were, in addition to the
minor pits, a few craters with volumes
approximately 100 to 200 times those of the
minor pits. Obviously the onset and size of
cratering depend strongly on water droplet
size also. This cratering behavior is believed
representative of that caused by natural rain
by virtue of the accuracy of the simulation.

As the normal component of velocity
increases above the threshold value, the size
and number of craters increase
proportionately. Also at velocities slightly
above the threshold value, some samples
cracked. Thus the major finding in this
effort was the identification of the damage
threshold region for SCFS, above which
rain erosion is expected to be severe and the
risk of catastrophic failure of an SCFS
radome in unacceptably high. Therefore, for
that at the

Holloman Air Force Base, the maximum

rainfields equivalent to
safe velocity for an SCFS radome occurs
when the normal component of velocity is

500 m/sec.

Based on rain damage results from sled
tests, the maximum allowable angle of
impingement versus freestream velocity is
shown in Figure 24 for SCFS radomes.
These data show that the radome angle-of-
impingement should not exceed 15 deg at
1932 m/sec (6340 ft/sec), 20 deg at 1462
m/sec (4797 ft/sec), and 25 deg at 1183
m/sec (3880 ft/sec). The most accurate data
are for freestream velocities above 1272



m/sec (4175 ft/sec), because the sled was
run through rain at or above this average
velocity. The extrapolation of the data in
Figure 24 to lower velocities and higher
angles as shown is believed satisfactory for
flights of short duration,

5. CONCLUSIONS AND
RECOMMENDATIONS

1. The measured maximum erosion rate
for SCFS tested at the Holloman Air Force
Base sled track facility varied by a factor of
three for the same normal component of
velocity. This behavioris considered normal
because of the brittleness of SCFS and the
variability of the rainfield.

2. The rain erosion threshold or
discontinuity in the erosion rate profile for
high-purity SCFS (density = 1.95 + 0.03
g/cm®) occurs at a normal component of

13

velocity of approximately 500 m/sec for
rainfields equivalent to the artificial

rainfield at Holloman Air Force Base.

3. At a normal component of velocity
above the threshold region, the risk of
catastrophic failure of an SCFS radome is
unacceptably high.

4. Silicone resin moisture sealants
DC808 and GE SR80 probably do not
significantly affect the rain erosion behavior
of SCFS (more test data is needed).

5. For in natural
rainfields

missile flights

equivalent to the artificial
rainfield at Holloman Air Force Base, it is
recommended that the impingement angle
be controlled so that the normal component
of the freestream velocity not exceed 500
m/sec (1640 ft/sec) on an SCFS radome.
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Figure 7. Test vehicle and samples after test 2.
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SILICONE RUBBER
GASKET

ASBESTOS PHENOLIC
WASHER BONDED TO SCFS

SLEEVE EXTENSION
o Te] o
o o © SCFS SAMPLE
o) o i
EPOXY VERSAMID
o
o o o
o ' 5 o STRESS RELIEF
(o] o o |
o ~ ASBESTOS PHENOLIC
7 X\ © O |, WASHER BONDED TO SCFS
______________
N : 7% “~ SILICONE RUBBER GASKET
// = —1 J«— STAINLESS STEEL BASE
A — 14— ’

Figure 14. Modifications to sample subassembly for test 5 and subsequent tests.
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Figure 18. Test vehicle and samples after test 10.
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Figure 20. Test vehicle and samples after test 11.
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Figure 22. Raln erosion results for bare SCFS on supersonic sleds.
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Figure 24. Allowable angle-of-impingement for SCFS
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APPENDIX A
TEST VEHICLE DESCRIPTION

The test vehicle was designed to carry a
maximum number of samples consistent
with achieving an average velocity of 5500
ft/sec through 2000 ft of the Holloman
rainfield, to be compatible with the existing
9-in. monorail sled at the Holloman test

-track, to be structurally adequate for the
environment, and to carry samples of the
desired shape that would also minimize the
risk of fracture due to stress risers related to
size and shape. The resulting test vehicle and
sample assembly are shown in Figure A-1.
Analysis showed that seven samples of an
adequate size could be carried efficiently, six
of which could be supported by struts

43

welded into a 15 deg half-angle cone. The
seventh could be carried at the front of the
central cone.

The test vehicle was fabricated of 17-4
stainless steel except for the aft 7.5 in., the
base section of the center cone, which was
machined 4130 steel. The external surface of
the test vehicle was coated with a high-
temperature composite by Holloman test
track personnel to minimize melting at
regions of shock impingement. Figure A-2 is
a view of the test vehicle as fabricated before
assembly and application of hardcoat
insulation.






Figure A-1. Test vehicle assembly.
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APPENDIX B _
TEST SPECIMEN SUBASSEMBLY DESIGN

The samples were designed to be mounted
on the vehicle in a subassembly. Each cone
frustum sample was assembled between a
stainless steel tip and base before being
mounted on the test vehicle, The initial
sample subassembly design is shown in
Figure 2.

The steel tip of the sample subassembly
secures the cone frustum sample in the
subassembly and serves as a rain cap
representative of current design practice for
SCFS
severely by normal impact of rain at Mach
5.2

radomes since SCFS is eroded

In the first test, gaskets of asbestos
phenolic were used at each end of the
samples to distribute loads
(Figure 2).

uniformly

A maximum preload on each sample of
approximately 6900 kPa (1000 lb/sq in.)
was applied to prevent loss of a sample if
cracking occurred. The vibration loads
expected to be induced by the track were
the vehicle and
without damage,

applied to sample

subassemblies, in a
laboratory simulation prior to the first sled
test. However, during the first sled test

47

severe chipping of the region near the
sample base and longitudinal cracking
occurred on most of the samples. There was
evidence also, on the steel tip stud, that tip
deflections had been severe. A typical result
is shown in Figure B-1. These effects are
attributed
vibration,
preload. To avoid these problems,
modifications to the samples and to the
mounting procedure were made. To
eliminate chipping of the base edge of the

to a combination of sled

rain impact and structural

samples a stress relief was provided to
prevent raindrop impact on the base corner.
To prevent longitudinal cracking of the
samples the sample preload was reduced to
one-half its value in the first test. The steel
sleeve through which the tip stud passes was
extended completely through the center of
the sample to prevent tip vibration from
imparting loads to the sample. Also, to
reduce vibration and to distribute loads
more uniformly to the samples, gaskets of
silicone rubber were used instead of gaskets
of asbestos phenolic at each end of each
sample. Some of the samples provided by
the High Temperature Materials Division of
the Georgia Institute of Technology had
invar washers bonded to each end of the
samples. This concept was incorporated, but



asbestos phenolic was substituted for invar
because of lower cost. As an additional aid
in reducing the effects of sled vibration,
epoxy versamid was used between the
sample and sleeve. These modifications

48

were successful and led to the final design
and mounting arrangement shown in Figure
14 which has been completely successful in
eliminating failures due to spurious causes.



Figure B-1. Typical result from first test.
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APPENDIX C
TEST FACILITY

1. TEST TRACK

The test track at Holloman Air Force
Base® extends along the east edge of the
White Sands Missile Range in a near north-
south direction over a total length of 15,480
m(50,788 ft). For Mach 5 rain erosion tests,
the sled operates on a monorail. Braking for
these monorail sleds is accomplished by use
of congealed water (colloidal silica) and
waterfilled polyethylene bags or frangible
plastic trays placed directly on the rail. Most
rain erosion tests are conducted during the
early morning hours (before dawn) to take
advantage of the calm night air on the desert
and to avoid collision with birds.

2. ROCKET SLEDS

Rocket sled hardware and motors were
provided by the Holloman Test Track

51

Directorate. Satisfactory velocity profiles,
with peak velocity occurring at the midpoint
of the rainfield, were achieved for each test
through proper selection of firing points,
staging, and combinations of rocket
propulsion.units. The test vehicle assembly
was mounted to the front of the sled

assembly, as shown in Figure C-1.

3. INSTRUMENTATION

Sled velocity was measured by sensors
positioned at regular intervals along the
track. Photographic coverage included
image motion compensation, horizontal
shadowgraph, high-speed motion, and still
documentary (before and after test).
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APPENDIX D
TEST ENVIRONMENT

1. RAINFIELD

The artificial rainfield (Figure D-I) at
Holloman is supplied by spraying sections,
122 m (400 ft) in length, installed on the west
side of the monorail. The spray heads are
mounted on stand pipes and are located
alternately 1.75 and 2.13 m (69 and 84 in.)
above and 0.46 m (18.25 in.) west of the
track at 1.2 m. (4 ft) intervals.

A nozzle pressure of 34.5 kPa (5 1b/in.?)
provides a reasonably uniform rainfield
with a density (mean liquid water content of
the air) of 3.1 g/m’, a mean rain rate of 67
mm/hr (2.63 in./hr), and a mass median
drop diameter of 1.37 mm.”'° The drop size
distribution is shown in Figure D-2. These
calibration data were obtained without
wind but are considered valid for cross-
track winds that do not exceed 3 knots (1.55
m/sec) and in-track winds of 5 knots.

33

2. TRAJECTORY

It was decided that a velocity profile
which peaked near the center of the rainfield
would provide a profile flat enough for valid
analysis. Nine trajectories for the tests are
shown in Figure D-3. A summary of the sled
test environment is found in Table 2.

3. AEROTHERMAL ENVIRON-
MENT AND TEMPERA-
TURE EFFECTS

The calculated external surface
temperature of a 15 deg SCFS sample
reaches a maximum value of 950°C

(1740°F) as shown in Figure D-4 for the

Mach 5 sled trajectory. At an angle of 22.5

deg the calculated maximum temperature is

1028°C (1822°F). The effect of rain on
surface temperature was not included in the
calculations.



Figure D-1. Holioman rainfield.
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Figure D-2. Rainfield drop size distribution.
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Figure D-3. Sied velocity In the rainfield.
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TEMPERATURE
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